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Abstract 
 
The effects of high-frequency fluidic actuation on the evolution of small- and large-scale motions in a turbulent 
shear layer downstream of a backward-facing step are investigated experimentally and numerically.  The flow 
behind the step is characterized in the spatial and spectral domain by high-resolution diagnostic tools.  Model 
stability problems with increasing complexity mimic the experimental setup and actuations and describe local and 
global flow behaviour. It is demonstrated that dissipative, high-frequency actuation effects the shear layer evolution 
through three domains: I – a localized dissipative, small scales domain having enhanced turbulent kinetic energy 
production and dissipation rate, II – a stabilized domain marked by concomitant suppression of turbulent kinetic 
energy production and dissipation rate, and III – a domain of re-emerging inviscid instability at lower natural 
frequencies and larger scales. 
 
Keywords: shear layer stability, flow control, parabolic stability equations. 
 
Introduction 
 
Direct small-scale (high-frequency) control has been extensively applied in the flow control applications where it 
was sought to effectively decouple the actuation input from the fundamental unstable frequencies of the base flow.  
Examples include control of the aerodynamic performance of bluff and streamlined bodies [1], and enhanced mixing 
in a plane [2] and axisymmetric [3] jets.  These flow control applications were enabled by the introduction and 
characterization of synthetic jet actuators [4]. The previous investigations have demonstrated that high-frequency 
actuation has a profound impact on evolution of free- and wall-bounded turbulent shear flows even though the 
actuation is introduced locally at scales that are typically an order of magnitude smaller than the naturally dominant 
scales of the base flow.  Wiltse & Glezer [2] indirectly estimated turbulent dissipation in the forced jet shear layer 
and concluded that even a small increase in velocity perturbations at high frequencies can lead to significant 
enhancement of dissipation, and consequently to a decrease in turbulent kinetic energy within the forced segment of 
the shear layer.  Measurements in the near wake of a cylinder where the lift and drag are controlled by high-
frequency surface actuation upstream of separation [5], showed a decrease in turbulent stresses in the forced shear 
layer accompanied by a decrease in vorticity, suggesting the increased dissipation in the near wake is a result of the 
forcing.  The decrease of turbulent stresses as a result of high-frequency actuation was also observed in the wake of 
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an airfoil [6] and was attributed to the increased dissipation and a decrease of energy transfer from the free stream.  
Cain et al. [7] performed a numerical study of high-frequency forcing on a free shear layer and concluded that the 
reduction in turbulent kinetic energy in the forced flow results from simultaneous increase of the dissipation rate of 
turbulent kinetic energy and decrease in its production rate.  The efficacy of control approach at frequencies 
substantially higher than the naturally-evolving flow frequencies was also demonstrated in the reduction of jet noise 
[8], cavity noise [9], and mitigation of optical effects during in-flight optical transmission [10].  Simulations of 
cavity flow with the control by vortex shedding from the cylinder showed significant flow stabilization at M = 0.6 
[11]. Shaw et al. [12] recently demonstrated suppression of pressure fluctuations in flight conditions up to M = 0.85 
by the application of synthetic jet, high-frequency control.  Numerical simulations [13] showed significant impact of 
direct high-frequency excitation on the suppression of cavity modes at M = 1.19.  Therefore, there is a solid body of 
evidence of the significant effects that this control approach has on the ensuing flow field.  However, there is still no 
unified understanding about the mechanisms by which the effected small-scale control alters the baseline flow.  
Wiltse & Glezer [2] showed that direct addition of high-frequency energy into the shear layer alters the energy 
cascade across broadband range and postulated that enhanced energy transfer from large to small scales may be the 
driving mechanism.  Next mechanism for explaining the effects of high-frequency forcing was proposed by Stanek 
et al. [14, 15], who hypothesized that high-frequency excitation modifies the time-averaged velocity distributions 
within the baseline shear layer and thereby makes it stable to low-frequency perturbations.  This model implies that 
stability analyses based on linear or nonlinear models can be used to describe high-frequency excitation in a similar 
manner that has been used for low-frequency excitation. In fact, an attractive feature of this approach is that a single 
stability analysis technique can be used in principle across a range of low and high frequencies to describe the 
control of shear layers. 
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The present work aims at extending the insight into the mechanisms and effects of dissipative, small-scale actuation 
of the shear layer, which can be outlined in the schematics shown in Fig. 1.  Figure 1a describes the growth of 
perturbations in the free shear layer. As the direct, small-scale control is applied, there is a localized interaction 
domain extending in the downstream direction (Fig. 1b). It is denoted as Domain I, and is characterized by dominant 
signatures of the high-frequency actuation: enhanced dissipation and production of turbulent kinetic energy.  As a 
consequence, baseline flow is altered in such a way that it is no longer unstable to the natural frequency of the non-
actuated flow.  This spatial domain is denoted as Domain II, and can be viewed as the “stabilized” shear layer 
having reduced production of turbulent kinetic energy and overall turbulent intensity.  Ultimately, altered baseline 
flow starts to develop a new inviscid instability in Domain III.  This instability is governed by the local shear layer 
properties, and thereby is characterized by a lower frequency than that dominating the original baseline flow.  The 
present research is comprised on an integrated experimental and numerical/theoretical work, with the emphasis on 
high temporal resolution in the constrained spatial domain (Domain I and partially Domain II) of the former, and 
lower temporal resolution analysis over a full spatial span (Domains II through III) of the latter.  This paper focuses 
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Figure 1.  Schematics of the effect of dissipative, high-frequency actuation on shear layer evolution denoted 
through three domains: I – localized dissipative (HF) domain having enhanced TKE production and 
dissipation rate, II – stabilized domain marked by concomitant suppression of TKE production and 
dissipation rate, and III – domain of re-emerging inviscid instability. 



on an investigation of the role and coupling mechanisms of high-frequency forcing in the local and global evolution 
of a plane turbulent shear layer. The main objectives are to gain a better integrated experimental and theoretical 
understanding of the role of the actuation in the enhancement of near field mixing and its effect on suppression of 
large-scale coherent motions. 
 
Experimental Setup and Flow Diagnostics 
 
The experimental investigation is conducted in a low-speed, closed return wind tunnel at Georgia Tech that is 
specifically designed for high-resolution PIV measurements.  The tunnel test section has transparent walls on three 
sides and measures 25.4 × 40.6 × 132.1 cm.  The tunnel screens are removed and a number of honeycomb sections 
is reduced to avoid PIV seeding blockage and accumulation.  Nonetheless, the measured free stream turbulence 
intensity is less than 0.5% over the entire range of tunnel speeds.  The shear layer is generated by the flow separation 
off the edge of a backward-facing step, thus representing a canonical single-stream shear flow.  This flow 
configuration is selected not only because of its inherent affinity for numerical studies, but because it also forces a 
sudden flow separation owing a steep change in the flow geometry.  The step spans the full width of the test section 
and its height relative to the wall of the test section is H = 50.8 mm.  Although the step is built in the upper wall of 
the test section (Figure 2a), all results are presented in a flipped field of view.  The actuation is effected by six 
synthetic jet actuator modules integrated into the step surface, which span about 95% of the step width. The 
boundary layer over the step surface is tripped well upstream of the edge, and the flow over the actuators is 
turbulent.  In the absence of actuation, the boundary layer thickness at the step edge is δ0 = 4.7 mm, the momentum 
thickness is θ0 = 0.35 mm, at the Reynolds number ReH ≈ 43,000 (based on the step height H and the free stream 
velocity U0) and Reθ0 ≈ 312.  The boundary layer shape factor at the step edge is h0 = 1.4. 
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Figure 2.  Schematics of the flow geometry (a) and mathematical model (b). 

Each actuator module is individually-addressable and issues a synthetic jet though two orifices that measure 0.38 × 
18.3 mm, having the spanwise spacing 1.9 mm between them.  The actuator orifices are located 8 mm (21 orifice 
widths) upstream of the step edge and the jets issue normal to the step surface.  Figure 2a shows the schematics of 
flow geometry.  The input to the actuators is a sinusoidal voltage signal of prescribed frequency.  Each module is 
calibrated outside of the test section by measuring cross stream velocity distributions over the exit orifice using hot 
wire anemometry, and the average exit jet velocity Uj is defined as an average over the expulsion part of the 
actuation cycle.  A movable miniature pressure probe is used for assessing the module performance in-situ between 
the runs.  The operating frequency of the actuators is within the range StH = 2.2 – 8.1 for the nominal free stream 
flow, and as a representative for the small-scale (high-frequency) actuation, nominal operating frequency is set at fd 
= 2000 Hz (StH = 7.36).  The jet momentum coefficient defines a relative jet “strength” as a ratio of the jet and the 
free-stream momentums Cμ = Uj2bj/(U02H), where bj = 0.38 mm is the orifice width.  To assess the effect of the jet 
momentum coefficient on the flow evolution, it is varied between Cμ = 0.004 and 0.051 in the present work. 

The flow fields are characterized by the particle image velocimetry (PIV) in spatial and hot wire anemometry in 
spectral domain.  Default spatial PIV domain consists of eleven partially overlapping windows spanning –0.5 < y/H 
< 0.5 and –0.5 < x/H < 2.5 (in the vertical, x-y, plane, c.f. Figure 2a) with the imaging resolution of 26.9 μm/pixel.  
Highly-resolved measurements of the turbulent dissipation rate and interaction between the high-frequency vortex 



pairs and the cross flow are taken at finer resolution, down to 6.5 μm/pixel.  For the flow mapping, both the CCD 
camera and part of the laser-sheet optics are positioned by the computer-controlled traverse mechanisms.  Initial 
processing of the PIV data is done by commercial Insight software, while the data postprocessing is done by the 
custom-developed software at Georgia Tech, including the composition of individual measurement windows into the 
single output domain.  Spectral characterization of the flow is done using a DISA anemometer with a single-sensor 
miniature probe.  Hot wire measurements are taken across the shear layer at eight downstream locations x/H = 0.1, 
0.2, 0.4, 0.6, 0.8, 1, 1.18, and 1.38. 
 
Mathematical Model 
 
A two-dimensional, unsteady, incompressible, viscous flow around a backward facing step of height H with far-field 
speed U0 is considered (see Fig. 2b). Distances are scaled with H and speeds with U0. The flow is described by the 
Navier-Stokes equations in the vorticity and stream function formulation: 
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Here ψ(x,y,t)  is the stream function and χ(x,y,t) is the vorticity. The flow axial and transverse speed components are 
given by u = ψ , v =-ψy x and the Reynolds number is Re = ρUH/μ, where ρ is the flow constant density and μ is the 
flow constant viscosity. We assume a high Reynolds number flow, Re>>1. The flow is subjected to the following 
boundary conditions. Along the inlet section at x=0 and y>0 we prescribe for all time t>0 the incoming stream 
function and the vorticity as follows:  
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Here, ψ0(y) describes the inlet base volumetric flux, resulting in a base incoming axial speed profile U0(y) = ψ0y 
where it is zero at y=0 and tends to one as y increases. This base speed profile is perturbed by an upstream flux 
perturbation of given size δ and general shape g(y,t), where typically, 0< δ<<1, g(0,t)=0, and g tends to zero as y 
increases. Along the step walls the no penetration and no slip conditions are set. As y increases the transverse speed 
approaches zero.  Also, as x increases the transverse speed and vorticity axial gradients approach zero. The flow is 
governed by two parameters 1/Re and δ. When these parameters are sufficiently small it may be amenable to 
asymptotic analysis. In the following sections we describe the development of a set of theoretical stability studies 
with increasing complexity which support each other, mathematically mimic the experimental setup (Fig. 2a), shed 
light on the measured data, and explore the possible interacting mechanisms of upstream excitation at low and high 
frequencies. 
 
Linear Stability Studies 
 
The computed base states with δ =0 at high Reynolds numbers exhibit in most of the domain away from the step that 
the local flow is nearly parallel, i.e. the transverse speed is near zero. Let the perturbation’s stream function be 
locally given by 1( , , ) ( ) exp[ ( )]x y t y i x tψ φ α= − ω  where and α ω are the perturbation’s wave number and 
frequency. The function ( )yφ  is described by Rayleigh eigenvalue problem at every axial position: 
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When temporal stability is studied, the wave number α is real and given and we look for the complex 
eigenvalues iR Iω ω+ and related eigenfunctions of (3). When spatial stability is investigated, the frequencyω is real 

and given and we look for the complex eigenvalues iR Iα α+ and related eigenfunctions of (3). Here is the Rω



frequency of oscillations and is the temporal growth rate of the perturbation, Iω Rα is the wave number periodicity, 

and is the spatial expansion rate of the perturbation. The local natural frequency fIα n at each x is found from the 

frequency  for which the growth rate is maximal and perturbation is most amplified. Rω
 
To improve on the predictions of the local stability analysis, the following asymptotic investigation is conducted. 
We assume that the base flow is nearly parallel, i.e. the flow develops over a longer axial distance than the 
transverse distance u=O(1) and v=O(ε), |ε|<<1. Here where  is the length of the separation zone. Then, sl/H lsε =
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Equation (4) provides insight into the development of the perturbations in space. The square root and sin terms in (4) 
describe a periodic street of vortices with a variable wave-length. The first two terms in (4) describe the 
perturbation’s amplitude along the shear layer.  At a low frequency of the upstream actuation, there are two 
opposing effects along the axial direction: 1) the near-field behaviour where the given excitation frequency is less 

than twice the natural frequency at that position. There, αI>0, the term ex grows with x, while 

A~1. Therefore, the perturbation amplitude grows in the near field over a distance from the step. This distance is 
related to position where the imposed frequency matches twice the local base flow natural frequency; 2) the 
downstream mid-field behaviour where the given excitation frequency is greater than twice the natural frequency at 
that position. There, α

p[ ( ', ) ']
0

x
x dx

I
α ω∫ %

I =0, the integral term is constant, and A decays exponentially with x. Therefore, in the mid 
field, the perturbation decays with distance from the step. Yet, it is expected that the perturbation feeds energy to the 
global mode that dominates the base flow at distances far from the step. A schematic description of this behaviour at 
a low excitation frequency is shown in Fig. 3a. Moreover, it is also predicted that the position where perturbation 
amplitude is maximum shifts toward the step as actuation frequency grows. On the other hand, when excitation 
frequency is greater than twice the maximum natural frequency along the shear layer, α =0 all along the layer, the I 
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Figure 3.  Schematic description of perturbation’s amplitude with the increase in excitation frequency for a 
low-frequency excitation (a) and with an increase in excitation amplitude for a high-frequency excitation (b). 



near-field behaviour is suppressed, and the perturbation’s size only decays with distance from the step (Fig. 3b), 
feeding less energy to the global mode that dominates the flow at large distances from the step. It is also clear that 
the perturbations’ strength increases with the increase of excitation amplitude δ. Figures 3a and b support the flow 
description suggested in Fig. 1. 
 
Nonlinear Parabolic Stability Equations 
 
The nonlinear parabolic stability equation (NPSE) approach extends the local linear stability problem (3) and the 
second-order model equation (4). The perturbation’s stream function is given by 

 where ( , , ) ( , ) exp ( ') '1 0 0− ⎤
⎥0

xM
x y t x y a x dx im tm mmm M

ψ ε φ ω= ∑ ∫
=−

⎡
⎢⎣ ⎦ 0ω is a fundamental frequency, is the mode 

index, is the mode wave number, is the mode shape function, and 

m

( , )x ymφ( )a xm 0mε is the perturbation 
amplitude at x=0 and is usually a small number in its size. The vorticity perturbation is: 

,( , , ) ( , ) exp ( ') '1 0 0ω
0

xM
x y t x y a x dx im tm mmm M

χ ε χ= −∑ ∫
=−

⎡ ⎤
⎢ ⎥⎣ ⎦ ( )2( , ) 2x y a a am m m myy mx m m mxχ φ φ φ φ= − + + + . The 

upstream, wall, and far-field conditions, for all , are m (0, ) , (0) , ( , 1) 0,0 0y a a xm m mm mφ φ φ= = − =  

. The modes’ shape functions are solved by a system of 

2M+1 coupled nonlinear parabolic equations, each of the form: 

( , 1) 0, ( , ) 0, ( , ) 0x x y x ymy m myφ φ φ− = → ∞ = → ∞ =

( ) ( ) ( ) ( ){ }
( ) ( ) ( )( )

( ) ( )

, , , ,0 0 1 2 3
1 22 20 0

2            exp '       where           
0

L L L a Lm m mx mx m m mx my mym
M

a a a a a a ak l k k ly l lxy kx ly k ly kx k k k kx lx k ly
k M
l m k

x
a a a dx am m m m myyk l

ε φ χ φ χ φ χ φ χ

ε ε φ χ φ φ χ φ χ χ φ φ

χ φ φ

+ + + =

−
− + + − + − −∑

=−
= −

× + − = − +∫

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

% % % %

% % % %

%                                      (5)

   

( ) ( )

( ) ( )

( ) ( )

where
2 12 ,        , ,0 0 Re Re

4 2, 2 2 ,1 0Re
242

, ,         ,2 0 3Re Re

ama L a im am m m myy m m y m m yyy m m myy

amL im a amx mx y mx yyy m m y mx

amL a im Lm m m y m m my my x m

χ φ φ φ χ ω χ φ χ

φ χ χ ω φ

φ χ χ ω φ φ χ χ

= − + = Ψ − − + Ψ −

= Ψ − + Ψ + − Ψ

= − − Ψ − + = −Ψ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

% % %

% %

% % % % .y yyx mφ− Ψ

%

y

  

The right hand side of (5) allows for the nonlinear interaction between the various modes assigned and cascade of 
energy from low to high frequencies. Also, the equation for 0m =  gives the steady distortion mode of the base flow 
due the nonlinear interaction between all the other perturbation modes. The base flow plus the zero mode give the 
mean flow.  A numerical code has been developed to solve the problem (5). Following Day et al. [17], the code uses 
the finite-differences method with first-order backward differencing in the x-direction and second-order central 
differencing in the y-direction. The resulting scheme for each equation is 

 and results from the 

nonlinear terms in N. The solution of these equations requires sub iterations until convergence at each axial location 
i is achieved. Again, the numerical experience shows that for numerical stability the vertical step size yΔ  mu  obey, 
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over a large distance along the shear layer. In solving these equations, the values of a (x) for each mode m
M m M− ≤ ≤  need to be updated due to the perturbed nature of the flow at each axial location i. They are integrated 

using an iterative strategy according to the following formula of Day et al. [17] 
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m iv  is the velocity vector shape function of mode m at location i and iteration n. Also, mσ  is a 

convergence control factor of mode m and is determined by matching the NPSE results for very small values of 
with the results for a linear analysis. 0mε

 
Baseline Flow 
 
The baseline flow at Re=43,000 in the absence of actuation is first characterized experimentally in both spatial and 
spectral domains.  Figure 4a shows the ensemble-averaged composite flow field measured by the PIV in terms of the 
raster plot of the spanwise vorticity with overlaid equidistant mean velocity profiles.  As the oncoming boundary 
layer terminates into the single-stream shear layer at the sharp flow separation at the edge, there is an asymmetry in 
its cross-stream spreading owing to the strong entrainment on the low-speed (wall) side. As a result, the shear layer 
spreading is biased towards the wall, and the mean flow evolves slowly in the downstream direction.  The 
momentum thickness θ of the shear layer increases linearly in the downstream direction. The baseline flow is 
evidently not self-similar in the measured near field, while the flow self similarity in the far field is not expected 
because of the finite height of the step, i.e., proximity of the wall boundary. In order to conduct a relevant linear and 
nonlinear stability analysis of the experimental shear layer behind a backward facing step at Re=43,000, a baseline 
flow field was computed numerically using the Fluent code with the k-ε model for turbulence in the domain –1 < 
y/H < 5 and –5 < x/H < 20. It is found that the computed mean velocity profiles are similar to the measured mean 
profiles in the entire domain 0 < x/H  < 2.5. Figure 4b shows the similarity of the computed mean flow vorticity field 
with the experimental measurements in Fig. 4a. Figure 4c shows the flow streamlines in the full numerical domain. 
The baseline flow reattaches at x/H ~ 5.5. 
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Figure 4.  Measured ensemble-averaged vorticity ζz field with overlaid mean velocity profiles (a), computed 
mean vorticity field (b) and streamlines over the full computation domain (c). 

To further investigate natural receptivity to disturbances of the baseline shear layer, spectral analysis of the baseline 
flow is done using hot-wire anomemetry (HWA).  For that purpose, power spectra of the velocity fluctuations in the 
baseline flow are measured across the shear layer at eight downstream locations through x/H = 1.4.  It should be 
emphasized that no source of disturbance is applied to the flow, i.e., all disturbances that are amplified by the flow, 
which energy content is measured by the HWA, originate from the ambient noise.  Figure 5a shows contour plots of 
the extracted energy content from power spectra measurements at frequency f = 300 Hz, which is estimated to be 
within the receptivity range of the baseline flow. Three additional power spectra fields are also analyzed at 



frequencies 200, 100, and 50 Hz (not shown).  As expected, the domains of peak amplification of energy content 
move downstream with the decrease in frequency.  As seen in Fig. 5a, fluid motions at 300 Hz are the most 
amplified around x/H = 0.4 (x/θ ≈ 60). Energy content at 200 Hz peaks at about x/H = 0.6 (x/θ0 0 ≈ 90), while the 
maximum amplification of motions at lower frequencies appear to peak outside of the measurement domain. As also 
marked on Fig. 5a, each contour plot of energy content yields the location of maximum amplification along with the 
estimate of its upstream and downstream spatial boundaries. Spatial locations of the peak energy content at the 
analyzed frequencies are plotted in Fig. 5b, along with the most amplified frequency fn resulting from the local 
stability analysis of the mean flow field using Rayleigh’s equation (3).  The nominal line represents the axial 
position of the middle of a domain with a certain dominant frequency, the lower bound represents the most upstream 
axial location of this domain and the upper bound is the most downstream axial location of this domain.  It can be 
seen that the natural frequency decreases with distance from the step, indicating the growth of the shear layer 
thickness with distance, as is found form the mean flow profiles.  Note that some experimental data do not yield all 
boundaries due to the limited measurement domain, and only the lower boundary profile is complete for all 
frequencies.  Overall agreement between the measurements of the peak energy content and the computed most 
amplified frequency is good, although the linear stability analysis results tend to align better with the lower 
boundary of the experimental data. Also note that the naturally most amplified frequency decreases with the growth 
of θ  such that Stθ  = fn θ/ U ∼ 0.032. 
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Figure 5.  Raster plot of spectral energy at f = 300 Hz in the baseline flow (a) and the plot of maximum 
spectral energy at discrete set of frequencies (b) at: peak (○) and upstream (∆) and downstream (∇) 
boundaries. Also, results of the local stability analysis of measured baseline velocity profiles are shown (●). 
Contour levels: 1E-4  5E-3. 

Actuated Flow 
 
Direct, small-scale control of shear layer is effected via a periodic train of high-frequency vortex pairs that are 
injected into the baseline cross-flow through a spanwise array of actuators.  To assess the dynamics of the vortex 
train interaction with the baseline flow, highly-resolved PIV measurements are taken within –0.2 < x/H < 0.8 at 
different jet momentum coefficients Cμ.  The measurements are taken phase-locked to the actuation signal and raster 
maps of the calculated vorticity component are shown in Fig. 6 for three jet momentum coefficients.  At a low level 
momentum coefficient (Cμ = 0.004, Fig. 6a), the interaction of the actuator jets with the cross-flow is primarily 
confined to the wall boundary layer.  The vorticity within the boundary layer is clearly temporally and spatially 



modulated, with a weak counter clockwise (CCW) vortex preceding a dominant clockwise (CW) vortex.  However, 
coherence of the CW vorticity rapidly diminishes within the shear layer.  As the momentum coefficient of actuation 
increases, the jet vortices (which then have higher circulation) begin to protrude through the edge of the boundary 
layer and thereafter maintain their coherence farther downstream within the shear layer, primarily along its high-
speed edge (C

 

Figure 6.  Phase-averaged (a, c, e) and ensemble-averaged (b, d, f) vorticity field ζz with overlaid mean 
vector profiles for the flow actuated at St = 7.36 and Cμ = 0.004 (a, b), 0.026 (c, d), and 0.051 (e, f). Location 
of the actuator orifice is marked by a triangle. Vorticity ζ  (s-1) contour levels:-2500  2500. z

μ = 0.026, Fig. 6c).  At the same time, stronger CCW vorticity concentrations become visible farther 
downstream, but are rapidly dissipated over a distance of 1.5 actuation wavelengths.  It is clear that high-frequency 
actuation imposes a train of CW vortices that interact with the shear layer.  Further increase in the jet momentum 
(Cμ = 0.051, Fig. 6e) leads to an upstream separation of the jet vortices off the step surface and as a result the train of 
vortices separates from the high-speed edge of the shear layer.  Nonetheless, the jet vortices still interact with the 
shear layer and begin to lose their coherence by x/H ~ 0.5 as they are convected downstream.  It is also noteworthy 
that the increase in the jet’s momentum coefficient induces significant alteration in the overall structure of the shear 
layer which spreads substantially more towards the low speed side ostensibly owing to the vectoring by jet vortices 
near the step edge (e.g., compare Figs. 6a and e).  This spreading of the layer is accompanied by a reduction in the 
magnitude of the vorticity in the upper region of the shear layer and induced upward flow along the vertical wall of 
the step.  Accompanying the phase-averaged plots, the composite cross stream vorticity plots of the entire 
measurement domain –0.5 < x/H < 2.5 are shown in Figs. 6b, d, and f, along with overlaid velocity profiles at 
equally-spaced downstream locations.  The corresponding map for the unforced flow is shown in Fig. 3a.  For 
actuation at Cμ = 0.004 (Fig. 6b), there is not much visible difference between the time-averaged velocity and 
vorticity fields of the unforced and forced flows (the vorticity magnitude decreases only slightly in the forced flow). 
As the momentum coefficient is increased (Fig. 6d, Cμ = 0.026), the shear layer spreads more towards the low speed 
side, the magnitude of the vorticity within the shear layer decreases, and there is a broadened vorticity concentration 
just upstream from the step edge.  Ultimately, the jet is separated from the initial shear layer (Fig. 6f), but it is 
apparent that they merge in the downstream direction.  Therefore, the varying jet momentum coefficient determines 
whether the main interaction between the high-frequency vortex train (of the jet) and shear layer will take place right 
from the shear layer formation (low Cμ), or be pushed further downstream, with the increasing Cμ. 
 
The effects of the actuation on the development of the shear layer are further characterized by its downstream 
evolution of the momentum thickness θ, as shown in Fig. 7, along with the baseline case.  At the lowest actuation 
level (Cμ = 0.004), there is no significant change in development of θ relative to the baseline case, besides initial 
small increase that is followed by a small decrease in θ.  Contrary to this case, the other two actuations show a 
notable increase in spreading of the shear layer and the corresponding momentum thickness.  It should also be noted 



that the prominent growth of the shear layer occurs immediately downstream of the step edge (up to x/θ0 ≈ 150) and 
that the growth rates (dθ/dx) approach that of the baseline flow afterwards. 
 

One of the important consequences of the controlled flow field from the standpoint of its inviscid instability and the 
ensuing vortical motions is its altered mean flow structure. Fig. 8a compares the computed natural frequencies (of 
the most amplified perturbation according to Eq. (3)) for the free shear flow and the excited flow with high-
frequency perturbations and C

 

0 100 200 300
0

5

10

15

θ/
θ 0

x/θ0  

Figure 7.  Evolution of the shear layer momentum thickness for the baseline (○) and the flow actuated at St 
= 7.36 and Cμ = 0.004 (■), 0.026 (▲), and 0.051 (♦). 

μ = 0.026.  It can be seen that the natural frequency for both cases decreases with the 
distance from the step.  Also, the upstream excitation causes a significant decrease of the natural frequency up to 
x/H=1.5 or x/θ0 ≈ 220. Therefore, the excited mean flow in this range of distance from the step is more stable to 
higher frequencies.  Note, however, that the effect of upstream excitation decays with distance and beyond x/H=2 
(x/θ0 ≈ 290) the effect is minimal. The local linear stability analysis implies that the flow becomes more stable in the 
near field, as fundamental frequencies are lowered, and therefore, their formation lengths are extended in the 
downstream direction. Moreover, experimental measurements of the spectral energy at any specific energy-bearing, 
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Figure 8.  a) Calculated natural frequencies along the shear layer for the baseline (♦) and Cμ = 0.026 (▲). 
b) Raster plot of spectral energy at f = 300 Hz in the flow actuated at St = 7.36 and Cμ = 0.004 (b), 0.026 (c), 
and 0.051 (d). Contour levels are the same as in Fig. 5. 



low frequency motion show reduction in energy of those scales under the controlled flow conditions.  As an 
example, similar to the baseline case shown in Fig. 5a, the contour plots of the extracted energy content at frequency 
f = 300 Hz from the spectral measurements are shown in Figs. 8b-d, for the actuated flows with Cμ = 0.004, 0.026 
and 0.051. When compared to the baseline spectral map (Fig. 5a), it is seen that the energy level of motions at f = 
300 Hz becomes progressively suppressed with the increase in Cμ.  In the case of motions at f = 300 Hz, the peak 
energy reduction is in excess of 20% relative to the unforced flow. 
 
Further spectral analysis of the velocity fluctuations in the baseline flow and controlled flows is focused on 
assessing how the energy content of different flow scales (frequencies) changes upon the application of open-loop 
control.  Each controlled case is compared against the baseline flow with particular emphasis on the range of 
frequencies with either enhanced or suppressed energy after the control is applied.  The crossover frequency that 
separates suppressed from enhanced frequencies in the flow is denoted as fc. To illustrate several representative 
outcomes of such individual comparisons, Figure 9 shows an example of power spectra measured for the baseline 
flow and the flow actuated at St = 7.36 and Cμ = 0.026 at x/H = 0.1 (x/θ0 ≈ 15).  Two mean streamwise velocity 
profiles are shown in Fig. 9a with three characteristic cross stream locations marked at y/H = -0.06, 0, and 0.06, 
representing the low-speed edge, centre, and high-speed edge of the shear layer.  It is noteworthy that the power 
spectra of the baseline shear layer does not contain discrete spectral components that indicate the rollup frequency of 
spanwise coherent vortical structures, which in part can be attributed to the deliberate tripping of the upstream 
boundary layer. As seen in Figs. 9b and c, significant energy content in baseline flow carry the scales up to the 
corresponding frequencies of f/fd = 0.2, while the overall energy content along the high-speed edge is at least an 
order of magnitude lower, which indicates that zones of high fluctuating velocity components are tied to the central 
and low-speed domain of the shear layer.  Between the central and low-speed edge regions, it is also indicative that 
energy content of small-scale (high-frequency) motions drops sharply along the low-speed edge, while there is a 
wide range of small-scale motions evolved within the shear layer centre. The resulting difference in power spectra of 
the controlled flow relative to the baseline clearly depends on the spatial domain. Two common features of all 
controlled power spectra are the appearance of focused peaks at actuation frequency f/fd =1 and increase in energy 
content of the small scales.  The peak at the actuation frequency is the strongest along the high-speed edge as these 
actuation vorticies are carried into the shear layer along that path.  Although both the low-speed (Fig. 9b) and high-
speed (Fig. 9d) edge results yield an increase in overall energy across all scales (frequencies), there are different 
mechanisms behind this outcome.  A strong increase in energy along the high-speed edge is caused by both the 
influx of small-scale motions via vortical train (Fig. 6c) and increased turbulent energy production (Fig. 13b). Large-
scale energy content along the low-speed edge becomes enhanced during the active control due to the increased 
shear layer spreading and engulfing of nearly-stagnant fluid from below.  The small-scale energy content becomes 
also enhanced as turbulent energy production increases and overall energy feed to the small scales is accelerated. 
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Figure 9.  Mean streamwise velocity profiles (a) for the baseline (○) and the flow actuated at St = 7.36 and 
Cμ = 0.026 (▲) at x/H = 0.1 and the corresponding power spectra of velocity fluctuations at y/H = -0.06 (b), 0 
(c), and 0.06 (d). 



The most intriguing energy redistribution in the controlled flow takes place in the shear layer central region, see Fig. 
9c.  The power spectrum of the forced flow exhibits strong peak at the actuation frequency and have two other 
notable features.  First, even though the actuation is applied at f/fd = 1, there is significant increase in energy content 
over a broad range of small scales (for f > fc).  Second, simultaneously with the increased energy content of small 
scales, there is a decrease in energy at the large scales (low frequencies).  Although the measuring point is in the 
region where the net effect of the actuation induces local increase in the turbulent kinetic energy (Fig. 13a), these 
results show that energy content of the large scales actually decreases while energy of the small scales increases.  
Therefore, it is argued that actuation actually affects the energy balance between the two ends of the spectrum and 
enhances energy transfer to small scales, with an ultimate further transfer of energy into dissipation. 
 
Complete spectral results are shown in Fig. 10 as contour plots of the crossover frequency fc, which delineates the 
frequencies up to which the energy content of the large scales is lowered as a consequence of the dissipative 
actuation and above which the energy of the small scales is enhanced (relative to the baseline flow).  Three-color 
palette for the contour plots is set such that neutral (white) matches f /fc d = 1, i.e., it marks scenario in which the 
frequencies below the actuation frequency fd are suppressed, while the frequencies above fd have enhanced energy 
due to the active flow control.  As f  moves to the lower frequencies (f < fc c d), its contour becomes darker blue in 
color.  Opposite, as f  moves to the higher frequencies (f  > fc c d), its contour becomes darker red in color.  Therefore, 
the low limit scenario when all scales have energy lowered in the controlled flow relative to the baseline is 
represented as the darkest blue color, while the upper limit, when all scales in the controlled flow have their energy 
enhanced, is represented by the darkest red color. The present spectral results for Cμ = 0.004 are shown in Fig. 10a.  
It is seen that initial suppression of energy across the large scales spreads almost uniformly across the shear layer 
and that a range of affected scales rapidly increases toward the small scales.  In other words, an initial narrow-band 
increase in energy of the small scales is rapidly dissipated with downstream distance and the energy over all scales is 
already suppressed downstream of x/H = 0.2 – 0.3 (or x/θ0 ≈ 30 - 45).  Therefore, the effect of the dissipative control 
can be viewed as having a stabilizing impact in terms of the overall suppression of the fluctuations across all scales.  
The contour plots of fc in Figure 10b-c suggest that the transfer of energy among the scales is significantly altered 
with the increase in Cμ.  Already at Cμ = 0.026 (Fig. 10b), an initial sharp increase of the range of scales with lower 
energy is visible in the centre of the shear layer but both the high- and low-speed edges show overall increase in 
spectral energy across wide range of scales.  The high-speed edge of increased energy (zone A) is induced by the 
influx of the high-frequency vortices and increased turbulent energy production. It is also seen that this zone of 

 

Figure 10.  Contour plots of the crossover frequency f  for the flow actuated at St = 7.36 and Cc μ = 0.004 (a), 
0.026 (b), and 0.051 (c). 



increased energy narrows in the downstream direction as the high-frequency vortices lose their coherence and 
turbulent production weakens.  Along the low-speed edge (zone B), spectral energy increases due to the shear layer 
enhanced spreading under active control, and initially due to the increased turbulent energy production.  As the 
energy in this region is mostly fed through the large-scale motion of the engulfed fluid, the actuation effect is long 
lasting and reduction in energy over wide-band scales is not detected in the measurement domain.  The strongest 
decrease in energy occurs within the centre of the shear layer (zone C) and spreads slowly in the downstream 
direction over its boundaries. As Cμ is increased to the highest level (Fig. 10c), all three characteristic zones denoted 
in Fig. 10b are pushed further downstream. As the vortex train protrudes further into the flow and vectors the shear 
layer more towards the low-speed side (Fig. 6e), zones of increased spectral energy initially spread over a longer 
downstream distance, disabling the transition to the suppression of spectral energy in the shear layer centre. 
Therefore, only the beginning of the zone C is registered within the measurement domain in Fig. 10c. 
 
Nonlinear PSE analysis (using Eq. (5)) of the baseline computed backward facing step flow at Re=43,000 gives 
insight into the nonlinear complex interaction between the various modes of perturbations along the shear layer. Six 
modes at the specific frequencies  where 1, 2, 3, 4, 5, 6m mω = = are considered. The local linear spatial stability 
analysis at x=0 provides the upstream conditions for the perturbations’ normalized shape functions. Initial 

amplitudes are: with5 5 6 6 7 710 , 10 , 10 , 10 , 10 , 1010 20 30 40 6050ε ε ε ε ε ε− − − − − −= = = = = = 0m m0ε ε=− . These values may 
mimic regularly ordered, small turbulent perturbations entering the shear layer or a shear layer excited by upstream 
low-frequency perturbations (at frequencies of 44 Hz and 88 Hz in the experiments). The resulting field of stream 
function perturbation (Fig. 11a) shows that the low-frequency modes grow along the shear layer. The 2ω = (88 Hz) 
mode dominates the perturbations in the range 1 /x H≤ ≤ 2 . This is in agreement with Fig. 5b which shows a 
dominant frequency between 50 Hz and 100 Hz in this range. To demonstrate the effect of a high-frequency 
upstream excitation, the initial amplitude of the sixth mode (with ) is now increased to 10-56ω =  while all other 
amplitudes are kept the same as above. Here the amplitude of mode 6 is same as that of modes 1 and 2. This may 
mimic a case of excitation at 265 Hz (or St = 0.98) in the experiment. The resulting stream function field for this 
case is shown in Fig. 11b. It can be seen that a high-frequency perturbation dominates the shear layer within a 
distance of up to x/Η= 1.5 or x/θ0 ≈ 220 from the step. In this range of influence low-frequency perturbations are not 
dominant. However, downstream of this distance low-frequency perturbations reappear and dominate the flow 
exactly as in previous case. This behaviour is similar to that in Fig. 6, although actuation frequency is not as high as 
in the experiments. Note that with the grid of baseline flow used and existing computational power, the NPSE 
analysis can not resolve modes with frequencies greater than . 7ω =
 

 

 

 

Figure 11.  NPSE-computed field of stream function perturbation along the shear layer for the case of low- 
(a) and high- (b) frequency actuation. 

Further analysis assesses how dissipative, high-frequency actuation affects distribution of turbulent kinetic energy 
(TKE), which is estimated as 2 2( ' ' ) 2k u v= + .  Measured TKE profiles are plotted in Figs. 12a-c for the baseline flow 
and the flows controlled at St = 7.36 and Cμ = 0.004, 0.026, and 0.051.  At locations closest to the step edge (x/H = 
0.1, Fig. 12a), the baseline flow exhibits a highly focused profile of TKE within a narrow shear layer.  Controlled 



flow at the lowest Cμ has weakly altered TKE profile showing a slight increase in spreading to the low-speed side, 
but with reduction in peak TKE to k/U

 

0.00 0.01 0.02 0.03 0.04

-0.2

0.0

0.2

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

0 2x103 4x103 6x103 8x103 1x104

-0.2

0.0

0.2

0 2x103 4x103 6x103 8x103 1x104 0 2x103 4x103 6x103 8x103 1x104

 k/U2
0

y/
H

 k/U2
0

y/
H

k/U2
0

 y
/H

ε*=εH2/(3νU2
0) ε*=εH2/(3νU2

0) ε*=εH2/(3νU2
0)

a b c

d e

0.00 0.01 0.02 0.03 0.04

-0.2

0.0

0.2

f

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

0 2x103 4x103 6x103 8x103 1x104

-0.2

0.0

0.2

0 2x103 4x103 6x103 8x103 1x104 0 2x103 4x103 6x103 8x103 1x104

 k/U2
0

y/
H

 k/U2
0

y/
H

k/U2
0

 y
/H

ε*=εH2/(3νU2
0) ε*=εH2/(3νU2

0) ε*=εH2/(3νU2
0)

a b c

d e f

 

Figure 12.  Profiles of TKE k* at x/H = 0.1 (a), 0.25 (b), 0.5 (c), and TKE dissipation rate e* at x/H = 0.05 
(d), 0.1 (e), and 0.5 (f), for the baseline (○) and the flow actuated at St = 7.36 and Cμ = 0.004 (■), 0.026 (▲), 
and 0.051 (♦). 

0
2 = 0.02 from 0.024 of the baseline flow.  As Cμ is increased to 0.026, the 

shear layer spreading on the low-speed edge becomes more prominent, with the peak TKE exceeding the baseline 
case.  There is also a significant increase in the TKE level over the high-speed edge due to direct jet penetration 
further downstream and the consequent addition of convected TKE by the jets.  The “break” between the jet and the 
shear layer becomes even more pronounced for the highest Cμ case, and is marked by the presence of two distinct 
peaks in the profile.  The peak on the high-speed edge corresponds to the convected high levels of TKE by the high-
frequency jets, whose penetration length further increases with the increase in Cμ. Such a double-peak is also visible 
in the corresponding vorticity plots (Fig. 6f).  The addition of TKE energy along the high-speed edge clearly 
enhances energy levels within the shear layer, as the peak TKE becomes almost twice the corresponding baseline 
peak.  As a further consequence of increased TKE levels, the flow continues to spread more towards the low-speed 
edge and the shear layer broadens. By the next downstream location (x/H = 0.25, Fig. 12b), the peak of the low-
speed side of the flow is significantly broader, a significant addition of TKE by the convected jets is largely 
dissipated even for the highest Cμ case.  Note that simultaneously with the shear layer broadening with increase in 
Cμ, peak TKE becomes significantly suppressed in any of the controlled cases, when compared to the baseline flow.  
At the last downstream position shown (x/H = 0.5, Fig. 12c), already noted trend continues: the direct contribution in 
TKE energy by the jets weakens along the high-speed edge, while the shear layer spreading over the low-speed edge 
increases with Cμ, as more low-speed fluid gets engulfed into the shear layer.  Again, it should be noted that peak 
shear layer TKE levels are significantly suppressed in the controlled flows.  The other notable feature is that the 
TKE levels become suppressed across the shear layer for the lowest Cμ case, if compared to the baseline flow.  
Another indication of the shear layer “vectoring” towards the low-speed side is the migration of the peak TKE with 
the increase in Cμ. The effect of high-frequency forcing on turbulent dissipation rate ε is also quantified, and 
dissipation profiles are shown in Figs. 12d-f at three downstream locations x/H=0.05, 0.1, and 0.5. At the nearest 
location to the step edge (Fig. 12d), there is the strongest increase in the spatial domain with enhanced dissipation, 
as well as the strongest increase in ε absolute magnitude.  It should be noted that the dissipation increase is more 
pronounced at the high-speed side of the shear layer than on the low-speed side, as a direct consequence of the 
convection of the high-frequency vortices into the shear layer.  As the flow evolves in the downstream direction, 
there are several trends that can be noted: (i) absolute magnitude of ε decreases and eventually approaches the 
magnitude in the baseline flow, (ii) spreading of the zone with increased dissipation becomes more pronounced 
along the low-speed side while initial strong increase along the high-speed side subsides, and (iii) the peak ε 
magnitude becomes displaced towards the low-speed side.  Overall, it is believed that closely coupled localized 
strong enhancement in both turbulent energy production and dissipation rate prematurely drain energy from the 
mean flow upon actuation (relative to uncontrolled flow) and contributes to its stabilization later on.  Such domain 



of the localized stabilization is spatially-dependent on the momentum coefficient of high-frequency actuation, and 
can develop closer to the shear layer origin for the low Cμ, or be pushed further downstream for higher Cμ. 
 

 

  

Figure 13.  Profiles of TKE at x/H = 0.25 (a), 0.5 (b), 0.75 (c) and the flow actuated at St =0.96 and ε06=10-7 
(red line) and 10-5 (blue line). 

The effect of high-frequency actuation on the distribution of TKE along the shear layer is also assessed from the 
NPSE computations (Figs. 13a-c). Although perturbations are much smaller than in the experiments (a limitation of 
the PSE formulation for relatively short shear layers as in the present case), similar trends to those in Figs. 12a-c are 
observed. At locations closest to the step edge (x/H = 0.25, Fig. 13a), the flow with regularly ordered, small 
upstream perturbations exhibits a focused TKE profile within a narrow shear layer that decreases in its peak and 
becomes wider at (x/H = 0.5, Fig. 13b) and then peaks again at (x/H = 0.75, Fig. 13c). Increasing the amplitude of 
the higher frequency mode 6 (St = 0.98) has altered TKE profile showing an increase in spreading to the shear layer 
low-speed side at x/H = 0.5 (Fig. 13b), but with reduction in peak TKE. At x/H = 0.75 (Fig. 13c) the effect of the 
higher frequency excitation decays and at downstream locations low frequency perturbations dominate the flow 
again. 
 
Distributions of integrated turbulent kinetic energy across the shear layers are shown in Fig. 14a for the baseline, 
and three controlled flows (Cμ = 0.004, 0.026, and 0.051).  It is expected that the total energy across the shear layer 
initially increases in part due to the influx of energy carried by the high-frequency vortices.  Indeed, all three 
controlled cases show initial increase in k, directly proportional to Cμ.  The highest Cμ clearly induces the highest 
increase in total energy, but as the control effect diminishes downstream, k starts to approach the baseline case from 
above.  After a short initial increase in k up to x/H ≈ 0.5 (x/θ0 ≈ 73), middle Cμ generates total TKE comparable to 
the baseline case in the remaining measurement domain, while it is indicative that the lowest Cμ control leads toward 
suppressed total TKE throughout the measurement domain after x/H ≈ 0.1 (x/θ0 ≈ 15).  Significant initial increase in 
total kinetic energy is partially attributed to the influx of energy carried by the small-scale control vortices, but as 
they also interact with the shear layer and lose its coherence, it is expected that the production rate of TKE becomes 
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Figure 14.  Evolution of the cross-stream integrated (a) and averaged (b) TKE k for the baseline (○) and the 
flow actuated at St = 7.36 and Cμ = 0.004 (■), 0.026 (▲), and 0.051 (♦). 



thereby enhanced.  To assess the effect of dissipative control on production of TKE in the shear layer, integrated 
turbulent energy production (Π) across the shear layer is calculated and shown in Fig. 14b.  As seen in Fig. 14b, 
integrated Π steadily increases in the baseline flow up to x/H = 0.4 and thereafter remains relatively flat.  The 
control at Cμ = 0.004 induces a weak and short initial increase in Π, which is followed by a significant suppression 
of overall production throughout the measurement domain.  At Cμ = 0.026, there is a more pronounced and slightly 
longer initial domain of increased Π, which is again followed by a large domain of pronounced suppression of 
production.  Finally, in spite of a large initial increase in Π for the highest Cμ case, the shear layer generates less 
turbulent motions starting as close as x/H = 0.3 (x/θ0 ≈ 50). 

 

  

 

Figure 15.  Evolution of the cross-stream integrated (a) TKE k for the flow actuated at St = 0.96 and ε06= 
10-7 -5  (red line) and 10 (blue line). 

The integrated perturbations kinetic energy across the shear layer are also computed from the NPSE analysis (Fig. 
15). Again, although perturbations are much smaller than in the experiments, the trends are similar to the 
experimental results in Fig. 14a. The flow with regularly ordered, small upstream perturbations shows a gradual 
growth of the integrated TKE long the layer. The flow with the increased amplitude of the higher frequency mode 6 
shows a decrease in the integrated TKE with minimum at x/H ~ 0.5 and levels comparable to the previous case. At 
x/H  > 0.7 the integrated TKE of the controlled case increases again and at x/H > 1.5 levels are similar to those of the 
previous case. 
 
Conclusions 
 
The effects of high-frequency fluidic actuation on the evolution of small- and large-scale motions in a turbulent 
shear layer downstream of a backward-facing step can be investigated experimentally and numerically.  It is 
demonstrated that dissipative, high-frequency actuation on effect the shear layer evolution through three domains 
(see Fig. 1).  For instance, analyzed cases yield approximate boundaries of Domain I, 0 < x/Η < 0.3 or 0 < x/θ0 
< 45, where localized dissipative, small scales enhance the turbulent kinetic energy production and dissipation rate. 
Domain II, 0.3 < x/Η < 0.7 or 45 < x/θ0 < 100, where a stabilized shear layer exists, marked by concomitant 
suppression of turbulent kinetic energy production and dissipation rate. In domain III, x/Η > 0.7 or x/θ0 > 100, the 
inviscid instability reappears but at lower natural frequencies and larger scales than those in the free layer. 
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Direct small-scale manipulation of the BFS shear layer is investigated 
experimentally and numerically.
Continuous high-frequency actuation is effected by interaction of a small-
scale vortex train with the shear layer.
Stability analysis suggests that high-frequency actuation is characterized by 
fd > 2fn,max.
High-frequency actuation modifies the base shear layer:

Region I:
much thicker shear layer and significantly lower natural frequencies
increase in both TKE production and dissipation
“stabilized” flow to fundamental instability

Region II:
thicker shear layer and lower natural frequencies
suppressed peak of TKE and spread of energy in the thicker shear layer 
“stabilized” flow to fundamental instability

Region III:
Energy of high-frequency actuation is dissipated
No significant alteration of shear layer thickness and natural frequencies
Re-emergence of inviscid instability, but at lower frequency and spatially delayed

Conclusions
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HF Domain

I II III
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•
 

The possible mechanism:
-

 
high-frequency excitation of mode M modifies the mean flow 
through the zero mode changes
-

 
the modified mean flow interacts with the low frequency modes 

(ω1

 

, ω2

 

,…, 2ωn,max

 

) to redistribute their energy and lower it

M & conj(M) 0 0 & 1 + 0 & conj(1) modified 1;
0 & 2 + 0 & conj(2) modified 2; …

-
 

As the strength of mode M decreases along the shear layer its 
effect decreases and low-frequency modes reappear but at lower 
natural frequencies 

Discussion: High-Frequency Excitation
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